

Feature Studies for PV Fault Classification Using Nonlinear Principal Component Analysis

Maxwell Yarter [1], Gowtham Muniraju [1], Andreas Spanias [1], Yiannis Tofis [2] [1] Arizona State University School of ECEE [2] University of Cyprus KIOS Center

MOTIVATION

Automatic solar fault detection is more efficient and cost effective

Ten solar features are used for classification

- Less features can shorten training time
- Knowing which features are redundant informs us which sensors are needed

Greater classification accuracy means more power output

Nonlinear PCA techniques may reduce the number of solar features needed for fault classification and improve classification accuracy.

Challenges:

- Autoencoder only eliminate redundancy and do not perfectly emulate the input data
- Using KPCA requires training 9 different classification networks per kernel function

NONLINEAR PCA METHODS

KPCA Block Diagram

Autoencoder Block Diagram

Data Set: NREL solar testbed 10 feature data set [1]

- Features: DC Power, Max. Voltage, Max. Current, Temperature, Irradiance, Fill Factor, Gamma, Max. Power, Open Circuit Voltage, Short Circuit Current
- Faults: Standard Test Condition, Short Circuit, Degraded, Shaded, Soiled

□ Kernel Functions: linear, polynomial, RBF, sigmoid, and cosine.

RESULTS

KPCA Fault Classification Accuracy vs. Dimension of Embedding Space

IRES project sponsored by NSF Award 1854273

#10

86.192989

77.040023

87.604713

86.580825

83 803910

87.806392

71.998137 77.924293

AUTOENCODER RESULTS

M	Crun	#2	#3	#4	#5	#6	#7	#8	#9	#10
0	0.0	46.493950	66.289175	67.592305	18.957493	75.255972	77.334779	74.107975	78.529322	74.728513
1	1.0	60.114801	70.415759	59.432209	77.986348	72.184300	80.096185	72.354949	80.515051	77.226186
2	2.0	19.360843	63.403660	60.843933	72.323924	67.219979	69.950354	71.393114	72.572136	79.103321
3	3.0	61.340368	62.224632	67.018306	74.681973	72.091222	74.868137	75.054300	76.140243	72.122246
4	4.0	19.484952	56.670803	62.007445	73.487437	73.611540	74.154514	77.738130	80.065155	78.793049

Autoencoder Fault Classification Accuracy vs. Dimension of Embedding Space

IRES project sponsored by NSF Award 1854273

FEATURE VISUALIZATION

Overlap in STC and Shaded feature clusters for both nonlinear techniques Confusion matrix shows STC and shaded misclassification

5 Feature Linear KPCA Confusion Matrix

University
of CyprusSensor Signal and Information Processing Center
https://sensip.asu.edu

IRES project sponsored by NSF Award 1854273

Successful reduction of feature space
85.1% Accuracy using linear kernel and 5 features.
Autoencoder <80% accuracy for all dimensions
No nonlinear redundancy in the feature set

ONGOING & PLANNED WORK

Determine a feature that could distinguish between STC and shaded fault

Verify these results using more data

Complete IEEE format report detailing results

Consolidate nonlinear and linear PCA results into a single paper

REFERENCES

[1] S. Rao, S. Katoch, V. Narayanaswamy, G. Muniraju, C. Tepedelenlioglu, A. Spanias, P. Turaga, R. Ayyanar, and D. Srinivasan, "Machine learning for solar array monitoring, optimization, and control," Synthesis Lectures on Power Electronics, vol. 7, no. 1, pp. 1–91, 2020.

[2] S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[3] W. W. Hsieh, "Nonlinear principal component analysis by neural net-works," Tellus A, vol. 53, no. 5, pp. 599–615, 2001.

[4] H. Heiko, "Kernel pca for novelty detection," Pattern Recognition, vol. 40,no. 3, pp. 863–874, 2007.

[5] R. Shao, H. Wentao, Y. Wang, and Q. Xiankun, "The fault feature extraction and classification of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform," Measurement, vol. 54, pp. 118–132, 2014.

[6] H. Yeh, "Image-based Process Monitoring via Generative Adversarial Autoencoder with Applications to Rolling Defect Detection," M.S. Thesis, Arizona State University, Tempe, 2019.

University
of CyprusSensor Signal and Information Processing Center
https://sensip.asu.edu