## REU Project: Real-Time Multi-Camera Object Detection and Similarity Matching for 3D Mapping



Emilio Montoya, David Ramirez, Andreas Spanias Arizona State University

## Goal

- Simultaneous live video feed from 2 cameras will run through an object detection CNN.
- The use of ORB points for feature matching across simultaneous live video feed from two cameras
- The use of a 360° camera for a broad POV for one camera
- Develop a room mapping algorithm which incorporates both object detection and feature point mapping.





Figure 1. CNN module detecting person and cat with multiple cameras





Figure 2. Feature Point Similarity Matching (yellow lines)

|          | • 360 Fisheye Camera                                   |  |
|----------|--------------------------------------------------------|--|
| Camera   | <ul> <li>Additional Simulated Robotic Agent</li> </ul> |  |
|          |                                                        |  |
|          | Convolutional Neural Network                           |  |
| Detect   | Object Detection                                       |  |
|          |                                                        |  |
|          | Localization of Independent Cameras                    |  |
| S.L.A.M. | Room Mapping                                           |  |
|          |                                                        |  |
|          | Structure from Motion                                  |  |
| 3D       | Real Time Position                                     |  |

| CNN Module Type                              | Average Inference Time from Cameras |  |  |
|----------------------------------------------|-------------------------------------|--|--|
| CenterNet HourGlass 104<br>KeyPoints 512x512 | 5.6910 seconds                      |  |  |
| SSD MobileNet v2 320x320                     | 0.1129 seconds                      |  |  |
| EfficientDet D0 512x512                      | 0.8080 seconds                      |  |  |
| SSD ResNet152 v1 FPN 640x640 (RetinaNet152)  | 14.8599 seconds                     |  |  |
| Faster R-CNN ResNet152<br>v1 640x640         | 22.9677 seconds                     |  |  |

Table 1. Average frame per second of CNN TensorFlow modules performing object detection from a live video source



Figure 3. 3D Room Mapping SLAM Algorithm Output

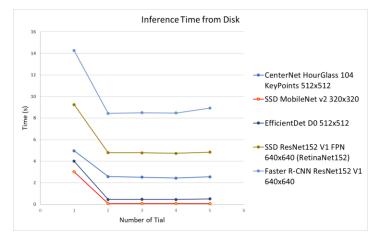
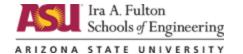




Chart 1. Comparison of CNN TensorFlow modules performing object detection from images



Sensor Signal and Information Processing Center https://sensip.engineering.asu.edu/reu-index-html/

