

J-DSP for Ion Channel Signal Processing

Mohit Malu

Prasanna Sattigeri, Jayaraman J. Thiagarajan, Karthikeyan N. Ramamurthy, Andreas Spanias,

Michael Goryll, Trevor Thornton, Mahesh Banavar, Abhinav Dixit, Jie Fan, Uday Shankar

Shanthamallu, Sameeksha Katoch, Vivek Narayanaswany

April 23, 2021

Final NSF IUSE Workshop Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules for STEM

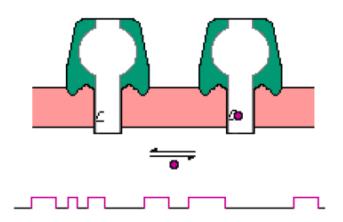
SenSIP Center, School of ECEE, ASU

The work at Arizona State University is supported in part by the NSF DUE award 1525716 and the SenSIP Center.

jdsp.asu.edu

Introduction to Ion Channels

- Ion channels are proteins that mediate the flow of ions and molecules across membranes such as cell walls.
- The utility of ion channels for *stochastic sensing* has been pioneered by Bayley and several collaborators
- Stochastic fluctuations in the ion channel current resulting from discrete binding events between the analyte and the channel are measured.
- They can be used in analyte classification, and they also sense at molecular levels
- Naturally occurring ion channels, such as α -hemolysin can be modified to include binding sites for a variety of different analytes.
- After binding, the analyte partially 'blocks' the conduction pathway and leads to a modulation in the ion current that can be used as a unique signature for sensing purposes.



Stochastic Sensing in Ion Channels

Stochastic sensing

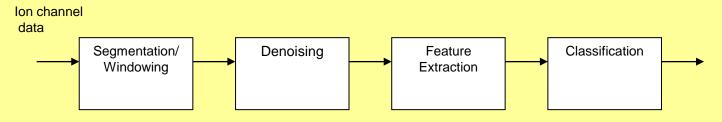
- based on single molecule detection

measure the ionic current flowing through a single protein pore with an engineered binding site

- frequency of occurrence of events
 - concentration of analyte
- signature: $\tau, \Delta g$ etc- identity of analyte

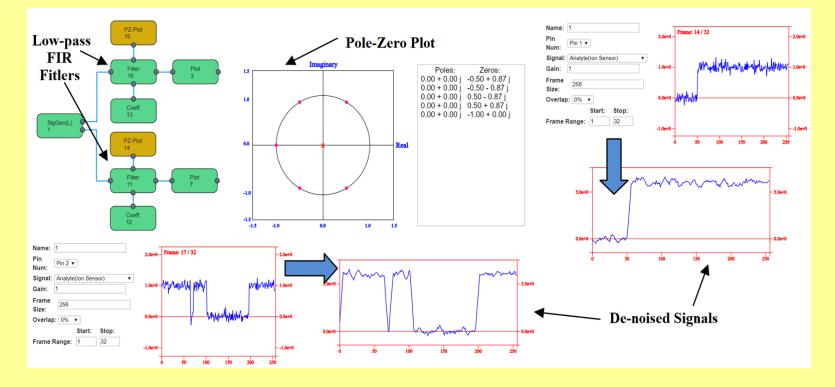
Courtesy of Dr H. Bayley Oxford University

Bayley, H. and Cremer, P.S. Nature <u>413</u>, 226-230 (2001).



Signal Processing of Ion Channel Currents

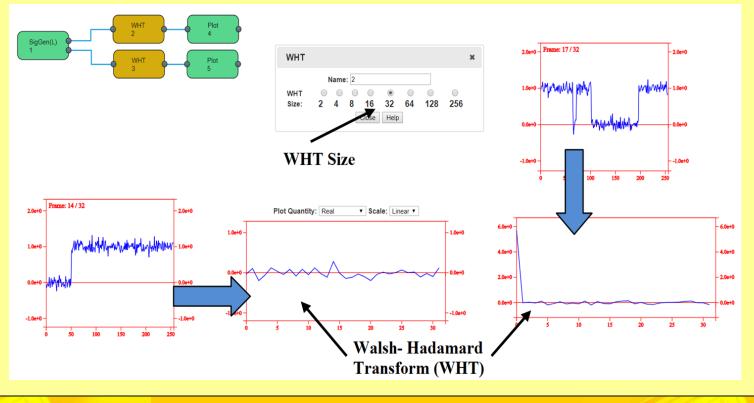
- J-DSP is used in teaching concepts of Ion channels to students.
- It is also used to teach signal analysis to students from different background working on ion-channel signal analysis.
- Signal and sensor processing:
 - The identification of unique stochastic current signatures
 - Spectral estimation
 - Attenuation of ion-channel noise
 - Appropriate Features for ion-channel currents
 - Classification algorithms



J-DSP for Ion Channels Signal Denoising

- The signal generator block in J-DSP can be used to generate ion channel signals both in presence and absence of analyte.
- Filter blocks are used to filter the noise from the generated signals.
- Figure below shows denoising of the ion channel signals using J-DSP block models

Sig Gen


5

J-DSP for Ion Channels Signal Processing

- Using J-DSP we can also compute the WHT of the ion channel signals.
- Figure below shows the WHT coefficients of frames of two ion-channel signals.
- An ion-channel signal can be well characterized by the K largest peaks among the WHT coefficients referred to as WHT features.

6

J-DSP for Machine Learning on Ion Channel data

- Using J-DSP K-means clustering is applied on the 2-dimensional feature vector of ion channels consisting of WHT and PSD features.
- Figure below shows K-means performed in the J-DSP

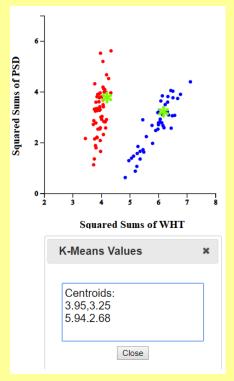


Figure: K-means clustering. The two clusters correspond to two classes of simulated ion-channel signals.

jdsp.asu.edu

J-DSP for Machine Learning on Ion Channel data

- K-means clustering was also applied on the dwell time analyzed data of ion channels.
- The Dwell time analyzed data contains the step size and dwell time of the channel in a specific state.
- Using the cluster centers we can compute the approximate rate constants which characterize different analytes.
- Figure below shows K-means performed in the J-DSP

Clustering of Dwell Time Analyzed Data					×
Name:	1				
SNR:	20dB	0.0100		•	
Dataset:	Dataset 1 💲			• • • •	•
K1 off:	20	0.0098 —	*	6-16-6-F	
K1 on:	4				
K2 off:	2	0.0096 —	•••	•	
K2 on:	4				
Centroid 1:	(1.651,9.770e-3)	0.0094 —			
Centroid 2:	(3.656,9.767e-3)			•	
		0.0092 —			
		0.0090		1	
Close	Jpdate	0	1 2	3 4	5

J-DSP for Teaching

Students in the EEE598-Biosensor course performing J-DSP ion-channel experiments.

Sig Gen

CONCLUSION

- Several J-DSP functions were created specifically for ion-channel signal analysis and classification.
- The general opinion of the students was that the exercises helped them better understand the properties of the ion-channel signals.
- The exercise had five components: time-domain analysis, pre-processing, parametric modeling, transform domain feature extraction, and inference using clustering.
- Students agreed that the ease of use of the tools facilitated effective learning.

