



### MOTIVATION

**COVID-19** Rapid Testing is needed in order to control the pandemic.

Shortcomings of conventional testing:

- Limited availability
- **Results can take long to obtain**
- Machine learning can be used to detect **COVID-19 using audio samples**

## **PROJECT AIM**

- **Create a robust algorithm for detecting COVID-19 using only audio samples.**
- **Simulate algorithm and obtain results**
- **Deploy the algorithm in a smartphone** app for widespread accessibility

# **COVID-19 DETECTION ALGORITHM**





OSTER TEMPLATE DESIGNED BY GENIGRAPHICS ©20 1.800.790.4001 WWW.GENIGRAPHICS.COM

- audio data



The REU supplement is funded by the NSF NCSS/SenSIP I/UCRC Award 1540040.

# **COVID-19 Detection using Audio Spectral Features** and Machine Learning

Michael Esposito<sup>1,2</sup>, Sunil Rao<sup>1,3</sup>, Vivek Narayanaswamy<sup>1,3</sup>, Andreas Spanias<sup>1,3</sup> <sup>1</sup>SenSIP Center, <sup>2</sup>School of Life Sciences (SOLS), <sup>3</sup>School of ECEE. Arizona State University.

### DATA COLLECTION AND ALGORITHMS

**Data Collection: Use of Coswara [1] and COUGHVID [2],** public datasets containing internationally crowdsourced

□ Algorithms: Visual Geometry Group 13 (VGG13) [3], Convolutional Recurrent Neural Network (CRNN) [4], Gated Convolutional Neural Network (GCNN) [5], Gated Convolutional Recurrent Neural Network (GCRNN) [6], and fusion method [7].

# **MOBILE PHONE SOLUTION**

## SPECTROGRAM OF COUGHING PATTERNS

**Spectrogram features capturing cough patterns** 

Images Converted and passed to Neural Net

Other Spectral Features and ML Algorithms considered [8, 9] NN Trained using Mel spectrograms generated from Coswara [1] and COUGHVID [2] data.

### ACKNOWLEDGEMENTS

# PRELIMINARY RESULTS

| Developed Python Implementation            |                     |                          |                                                              |                                                               |  |  |  |  |  |
|--------------------------------------------|---------------------|--------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| import feature                             | S                   |                          |                                                              |                                                               |  |  |  |  |  |
| <pre># Use a logmel extractor = fea </pre> | represe<br>atures.l | entation f<br>LogmelExtr | or feature (<br>actor(cfg.sa<br>cfg.n<br>cfg.h<br>cfg.n<br>) | extraction<br>ample_rate,<br>_window,<br>op_length,<br>_mels, |  |  |  |  |  |
| Class                                      | MAP@1               | F-score                  | Precision                                                    | Recall                                                        |  |  |  |  |  |
| COVID-19                                   | 0.320               | 0.292                    | 0.268                                                        | 0.320                                                         |  |  |  |  |  |
| healthy                                    | 0.738               | 0.761                    | 0.784                                                        | 0.738                                                         |  |  |  |  |  |
| Масто Ауегале                              | 0.529               | 0.526                    | 0.526                                                        | 0.529                                                         |  |  |  |  |  |

Micro Average 0.642 0.642

# **CONCLUSION**

- Feasibility of method dem
- Initial results are encouraging:
- 61.81% accuracy with REU algorithm (more recent results in SenSIP at 80%)
- 9M-22M parameters per model
- Training requires high speed computing

# ONGOING & PLANNED WORK

- **Detect COVID-19 with 80% or more** sensitivity with high specificity.
- **Develop software for use on smartphones**
- **Explore the use of additional features for** classification
- **Paper invited to IEEE Asilomar Conference**
- Obtain additional classification results using DiCOVA dataset and revised algorithms [10]
- Method to be applied to detect other breathing abnormalities

Sensor Signal and Information Processing Center https://sensip.asu.edu



| nonstrated |  |
|------------|--|
|            |  |

0.642 0.642



accuracy=0.6181; misclass=0.3819

### REFERENCES

- [1] N. Sharma, P. Krishnan, R. Kumar, S. Ramoji, S. Chetupalli, Nirmala R., P. Ghosh, and S. Ganapathy, "Coswara - A Database of Breathing, Cough, and Voice Sounds for COVID-19 Diagnosis," Interspeech 2020.
- [2] L. Orlandic, T. Teijeiro, and D. Atienza, "The COUGHVID crowdsourcing dataset: A corpus for the study of large-scale cough analysis algorithms," ArXiv abs/2009.11644
- [3] HK. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. 3rd ICLR, San Diego, 2015.
- [4] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997.
- [5] Y. Xu, Q. Kong, W. Wang and M. Plumbley, "Large-Scale Weakly Supervised Audio Classification Using Gated Convolutional Neural Network," 2018 IEEE ICASSP 2018, Calgary, 2018.
- [6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.
- [7] D. H. Wolpert, "Stacked generalization," Neural Networks, vol. 5, pp. 241–259, 1992.
- [8] A. Spanias, T. Painter, V. Atti, Audio Signal Processing and Coding, Wiley, 2007.
- [9] U. Shanthamallu, A. Spanias, C. Tepedelenlioglu, M. Stanley, "A Brief Survey of Machine Learning Methods and their Sensor and IoT Applications," Proc. IEEE IISA 2017, Larnaca, Aug. 2017.
- [10] Diagnosing COVID-19 using Acoustics (DiCOVA), A Special Session at Interspeech 2021, https://dicova2021.github.io