Digit Recognition using Spectrogram in JDSP

NSF IUSE Workshop 2021

Uday Shankar Shanthamallu
Introduction

• Machine learning (ML) is EVERYWHERE!

• Emerging applications in speech and computer vision necessitate its introduction at the undergraduate level DSP classes

• Growing interest and demand in both academia and industry

https://www.geeksforgeeks.org/machine-learning/
ML in Undergraduate DSP classes

• We introduce ML concepts in DSP class through learning modules

• The goal of the modules and exercise is to task students with performing spoken digit classification using ML algorithms and spectrograms

• Spectral representations which are covered in our DSP course are used to extract features
Overview of the Exercise

• Preprocessing and extraction of spectrogram from speech
• Feature extraction from resized spectrogram
• Training using ML algorithm such as Neural Networks
• Performance Evaluation: **Accuracy** and **Confusion Matrix**
Learning Modules

• We provided students with lectures and notes on speech processing & spectral representations

• Online module developed for students covers the following topics:

 - Preprocessing and Feature Extraction
 - Learning from Data
 - Training ML Algorithms
 - Performance Evaluation

• Special efforts were taken to teach students in class about different types of performance analysis such as accuracy measurements and confusion matrix
Speech Spectrogram and Feature Extraction

• We teach students the properties of speech (non-stationarity, formants, pitch, voice/unvoiced frames, AR models)

• Spectral characteristics are computed using the FFT on a frame-by-frame basis. Students are also exposed to Linear prediction

• Students learn about the and how the time-frequency plot for speech signal analysis.
Creation of Training and Testing Dataset

- Five spoken digits (0, 1, 2, 3, and 4) are used in the exercise. Students evaluate first the spectrograms.
- To reduced training complexity and for simplicity, RGB converted to 28 x 28 grayscale image reshaped to 784 dimensional vector.
- 10000 such vectors created for the entire dataset (10000x784)
Perceptron and the Adaptive Filter

- At the heart of the neural network, there is a process similar to an adaptive filtering algorithm which are used to optimize the weights/filter coefficients: **FIR adaptive filter**

- The structure of a neuron and that of an LMS adaptive filter are very similar with a few differences.

Training and Testing

- 3 layer Multi-Layer Perceptron
- Input: 10000 x 784 image matrix
- Output: Digit predicted (0,1,2,3 or 4).
- 70% - Training, 30% - Testing
Algorithm Evaluation

• Confusion matrix for the speech data.
 • Students determine the per class accuracy scores and misclassifications

• Recognition Accuracy scores
 • Students determine the overall training and test accuracy

• Experiment with hidden layer size to understand overfitting and underfitting.
Assessment of Modules and Exercise

• Pre-quiz and Post-quiz evaluation
• The questions in the quiz are related to learning modules and exercise

• 45 students participated
• Students gained knowledge on speech properties
• Students scored better on the post quiz
• Average Performance Improvement in SP Questions (1-6) ~ 14%
• Average Performance Improvement in ML Questions (7-14) ~ 28%
Work in progress

- Implementation in HTML 5 Java-DSP
- Simple Interface, Easy to learn and visualize
Summary

- We presented a MATLAB based exercise to introduce Electrical Engineering students taking the DSP class to machine learning.
- We illustrate the fundamentals of every block in the digit recognition pipeline.
- Students understood pre-processing and feature extraction.
- Students were able assess properties of speech from spectrograms.
- Students got exposed to neural nets and deep learning.
- We describe the teaching pedagogy.
- We perform pre and post quiz evaluations on students and observe significant improvement.
- Implementation in JDSP (Future Work)
Acknowledgement

The work at Arizona State University is supported in part by the NSF-DUE award 1525716 and the SenSIP Center.
References

Thank You