

AJDSP: Interactive Signal Processing Education Applications for the Android Platform

Presented by: Jie Fan

Project Member: Suhas Ranganath, Jayaraman J. Thiagarajan, Deepta Rajan,

Mahesh K. Banavar, Jie Fan

April 23, 2021

Final NSF IUSE Workshop Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules for STEM

SenSIP Center, School of ECEE, ASU

The work at Arizona State University is supported in part by the NSF DUE award 1525716 and the SenSIP Center.

Android-DSP (AJDSP) Overview

- AJDSP provides a mobile DSP lab environment.
- AJDSP has a rich suite of time and frequency domain signal processing functions.
- AJDSP is based on the Model-View-Controller (MVC) paradigm.

(a) Function search feature in AJDSP

(b) The architecture of AJDSP based on the Model-View-Controller paradigm

Ranganath, S., Thiagarajan, J. J., Rajan, D., Banavar, M. K., Spanias, A., Fan, J., ... & Tepedelenlioglu, C. (2019). Interactive Signal Processing Education Applications for the Android Platform. The ASEE Computers in Education (CoED) Journal.

AJDSP Simulation Example **Block Diagram** Freq. Resp Magn Freq. Resp Phase 1 = = = = = = = **=** Filter Coeff 1 Sig Gen Menu Filter Coeff Impulse Resp PZ Plot Signal Type Delta b0 1.0 a0 1.0 1.0 Gain b1 0.0 a1 -0.9 Pulsewidth 256.0 Periodic No b2 0.0 a2 0.1 Period 10.0 a3 0.0 b3 0.0 llllllluu...... 0.0 Timeshift

Filter design simulation in AJDSP shows the impulse and frequency response of a filter

Outreach & Assessments

- A lecture on the pertinent signal processing concepts.
- Having the students take a pre-quiz on the concepts involved in the laboratory exercise.
- Having the students perform the described simulation exercises and laboratories using AJDSP.
- having the students then take a post-quiz to test conceptual understanding.

(a) CDS high school

(b) Hermanas conference at Phoenix College

Sig Gen a

Plot

Evaluation with Graduate Students

(a) Education value

(c) Robustness

Plot

(b) User interface

(d) Satisfaction of speed

5

Sig Gen a

Sig Gen a

Plot

Evaluation with Undergraduate Students

Plot

Sig Gen

a

6

AJDSP Mobile Health Demos

Rajan, D. (2013). Designing m-Health Modules with Sensor Interfaces for DSP Education. Arizona State University.

Sig Gen

AJDSP Remarks

- AJDSP employs graphical programming, which enables the student to concentrate on the DSP concepts.
- The key features of AJDSP included signal processing modules, interactive animations, and an intuitive graphical user interface.
- Feedback from the workshops helps determine improvements and possible future directions for application development.
- AJDSP remains under development and maintenance to provide more education applications with respect to the recent Android APIs and the privacy policy of Google Play.

