New Project Proposal to NCSS I/UCRC

Audio Analysis of Cough and Breathing Patterns for COVID-19 Detection

Presenter: Andreas Spanias

Project Leads: Andreas Spanias (PI) and Greg Raupp

Date: December 15, 2020

ASU 2020-12-1
Problem Statement

› Why is this research needed?
 › Low cost, Non invasive COVID-19 detection will be fast efficient and accomplished via cell phone
 › Leveraging prior research in audio compression and recognition for COVID-19 sound analysis
 Potential to elevate the field of encryption
 › Machine learning, has been demonstrated to work well in sound recognition.

› What is the specific problem to be solved?
 › Develop and investigate unique audio features for COVID-19 detection
 › Develop customized machine learning algorithm for classification and COVID-19 detection via cellphone

› Challenges
 › Databases with COVID-19 audio data
 › Robustness of the classification process
Project Description

› How will this project approach the problem?
› Characterize performance and complexity.
› Develop specific features for Covid-19 audio features
› Develop customized neural nets for COVID-19 detection
› Create the software needed to eventually port on cell phone (2nd year)

› Preliminary results from this or previous projects:
› Some preliminary results created in our REU project [1]
Images from researchers at Cambridge University show how algorithms look for signs of COVID-19 in audio samples of coughs. (Courtesy of Dimitris Spathis)

ASU Study

Spectrogram from Cambridge University, UK

ASU Study
Project Differentiators

› What results does this project seek that are different (better) than others?
 › Customized Features.
 › Pruned NN Algorithms.

› What specific innovations or insights are sought by this research that distinguish it from related work?
 › Potential for high percentage of success in non-intrusive testing
 › Efficient Implementation on cell phone
 › Extension to other areas of breathing abnormality detection
Connection to NCSS Competencies/Capabilities

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net-Centric Solutions</td>
<td>Web Services</td>
</tr>
<tr>
<td>Next Gen HW and Tools</td>
<td>Cloud Computing</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>QoS</td>
</tr>
<tr>
<td>Information Assurance</td>
<td>Quality Improvement</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>SoS Integration</td>
</tr>
<tr>
<td>Big Data</td>
<td></td>
</tr>
<tr>
<td>Next Generation Network</td>
<td></td>
</tr>
</tbody>
</table>

Sensors & ML
- Audio Analytics

Levels of Competence

- **Primary** (1)
- **Secondary** (2)
- **Tertiary** (3)

1 = Primary, 2 = Secondary, 3 = Tertiary
Statement of Work:

Briefly describe the work to be performed, task budgets, and deliverables for the 5 most important tasks planned for this project.

<table>
<thead>
<tr>
<th>Task#</th>
<th>Description</th>
<th>Budget</th>
<th>Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task-1</td>
<td>Develop unique features for COVID-19 breathing</td>
<td>3 MOS</td>
<td>Performance and complexity profile, Software</td>
</tr>
<tr>
<td>Task-2</td>
<td>Develop customized NN algorithms using pruning approaches.</td>
<td>3 MOS</td>
<td>Presentation of results. Confusion matrix</td>
</tr>
<tr>
<td>Task-3</td>
<td>Improve results by training with additional data</td>
<td>3 MOS</td>
<td>Presentation and software</td>
</tr>
<tr>
<td>Task-4</td>
<td>Compare algorithms with prior work and establish final results.</td>
<td>3MOS</td>
<td>Software, Final Report. Prepare IEEE paper.</td>
</tr>
</tbody>
</table>
Potential Member Company Benefits

Important for diagnostics on breathing and cough

Extensions to other pathologies: Apnea, Dyspnea, Tachypnea

Assessment of basic algorithms and architectures and tech transfer.
Sponsorship and Collaboration

Efforts to involve multiple companies in project sponsorship:

- Resonea
- Lighsense
- Qualcomm

Multi-university Collaboration:

Describe efforts to involve multiple universities in sponsorship of the proposed research (whether or not they were successful).

This will likely mostly be performed at ASU.
Project Quality Attributes
PI’s assessment of extent to which project demonstrates each QA.

Project Quality Attribute Self-Assessment:
- **Alignment with Center Competencies**: 4
 - Machine learning, signal processing, sensors
- **Sponsor-acknowledged Leverage to R&D**: 5
 - Resonae, Qualcomm,
- **Multi-company Sponsorship**: 3
- **Multi-university Collaboration**: 2
- **Compliance with NSF Operations Requirements**: 5
- **Objective Deliverables**: 4
- **Innovation & Technology Evolution**: 3
 - AI/ML for Audio
- **Potential for Derivative Services**: 4
- **Commercialization Opportunities**: 3
 - It will need significant additional resources.
- **Past Performance**: 4
 - Publications in Audio & ML
References

