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Abstract—We propose a novel graph filtering method for
semi-supervised classification that adopts multiple graph shift
matrices to obtain more flexibility in dealing with misleading
features. The resulting optimization problem is solved with a
computationally efficient alternating minimization approach. In
simulation experiments, we implement both conventional and our
proposed graph filters as semi-supervised classifiers on real and
synthetic datasets to demonstrate advantages of our algorithms
in terms of classification performance.

Index Terms—Graph signal processing, graph filter, semi-
supervised classification, multiple graph shift matrices

I. INTRODUCTION

In recent years, graph-structured datasets and their process-
ing are experiencing a surge in various areas including wireless
sensor networks, social networks, image processing and deep
learning [1]–[4]. Toward this goal, traditional DSP theory
has been generalized to graph signal processing (DSPG) [5].
The DSPG framework enables applications of fundamental
techniques, such as filtering and frequency analysis, to graph
signals. DSPG has been widely adopted in classification [6]–
[8], approximation [9], inpainting [10] and denoising [11] of
graph signals.

In this paper, we focus on applying DSPG to semi-
supervised classification [12]. Graph-based semi-supervised
learning has been widely studied in the last twenty years. A
graph mincut algorithm is proposed in [13] for binary classi-
fication. An algorithm based on Markov random walks utilize
a manifold structure to classify data [14]. Label propagation
approaches [15]–[17] find the most likely state configuration
and can address classification problems with more than two
categories. Similar to the Markov random walk algorithm in
[14], label propagation approaches utilize a manifold structure.
Inspired by label propagation algorithms, DSPG utilizes graph
filter to solve the semi-supervised classification which was
pioneered in [5], [6].

Unlike label propagation algorithms directly updating the
labels in their manifold processes, DSPG methods update filter
parameters to obtain a well-trained graph filter as the classifier,
which allows less parameters in optimization. In DSPG, the
graph filter exploits information among both labeled and
unlabeled nodes. After filtering, the initially unlabeled nodes
are assigned with predicted labels and then classification is
completed. However, as label propagation algorithms rely
heavily on the initial generated graph, the performance highly
depends on its graph shift matrix, which is created from data
features. Because different features have different importance,

when some features cannot clearly show the similarities among
all nodes or may even mislead the classifier, the features should
not be treated equally. Therefore, some label propagation
algorithms that do not use DSPG integrate multiple graphs to
improve their performance [17]–[20]. However, these methods
are still based on the conventional label propagation tech-
niques. For the first time in the literature, we adopt multiple
graph shift matrices in graph filter design corresponding to
different features. The proposed design does not require any
complicated pre-processing to determine the importance of
each feature. Instead, such importance can be determined by
optimizing the weights of all graph shift matrices. Through an
alternating minimization process, we can obtain the filter taps
and graph shift weights for our well-trained filter.

The rest of the paper is organized as follows. In Section II,
we briefly introduce the mathematical background of DSPG

and give a specific problem statement. In Section III, we
develop our filter design approach. To compare our algorithm
with the conventional graph filter, we adopt both real and syn-
thetic datasets and design MATLAB simulation experiments
to observe their performance. The simulation results is shown
in Section IV. We draw conclusions in Section V.

II. PROBLEM STATEMENT

We consider semi-supervised graph data classification by
designing a graph filter. Let X = [x1, · · · ,xN ]

T be a real
N ×D data matrix, which collects data on N nodes with D
kinds of features. Here, xi represents a D × 1 column vector
that collects D features of the ith node. As a classification
problem, we want to use initially labeled nodes {1, · · · , N1}
for N1 < N to classify the remaining N − N1 nodes into
K categories. The labeled nodes and the remaining unlabeled
nodes together constitute an N × K initial label matrix S.
For example, if the ith node is labeled and belongs to the jth
category, then Si,j = 1 while remaining elements in the jth
row are zeros. When the ith node is unlabeled, all elements in
the ith row of S are zeros. In other words, Si,j = 0 whenever
i > N1.

A graph shift operator [6] is given by an N ×N matrix A
which is a generalization of the time-shift z−1 in traditional
DSP. Similar to FIR filters in DSP, an Lth order shift-invariant
graph filter is defined as

H = h1A+ h2A
2 + · · ·+ hLA

L, (1)

where hi are scalar graph filter coefficients. To solve the
classification problem described earlier, a graph filter can be
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used and the N × K classified label matrix Scla can be
obtained by,

Scla = Q(Sfil) = Q(HS), (2)

where Sfil is the filtered label matrix and Q(·) is a quanti-
zation operator which selects the most likely class. For data
classification, although the graph filter method is based on la-
bel propagation, two major distinctions generally differentiate
the DSPG approach from label propagation approaches [5],
[6]. First, DSPG approach only requires A to be nonnegative
and indicate similarities among nodes while label propagation
algorithms needs it to be a stochastic matrix. Second, the
graph filter is constructed by a matrix polynomial instead of
propagating node labels in a Markov chain. In [5], [6], the
N ×N graph shift matrix is chosen as

Ai,j =
exp

(
−ρ(xi,xj)

σ

)
∑N
i=1 exp

(
−ρ(xi,xj)

σ

) , (3)

where ρ represents Euclidean distance, σ is a scaling coeffi-
cient and xi,xj are ith and jth rows of X. The choice of A
will highly influence the performance of the graph filter.

The numerator in equation (3), which considers all features
together, captures the similarity between every pair of nodes.
In many practical applications, the information provided by
different features are not the same. To avoid demanding
prior knowledge and complicated preprocessing to evaluate
the importance of all features, we address a novel graph
filtering method with multiple graph shift matrices. Similar
to the conventional graph filter, we only require the graph
shift matrices to be nonnegative instead of being stochastic.
We keep the matrix polynomial structure.

Under the same assumptions of conventional graph filter
design, we can generate a series of graph matrices A (d) where
d ∈ {1, 2, · · · , D} corresponds to different features instead of
considering all features in one graph in (3). For any graph
shift matrix A (d), the element in the ith row and jth column
is

A (d)i,j =
exp

(
− (Xi,d−Xj,d)

2

σ

)
∑N
i=1 exp

(
− (Xi,d−Xj,d)2

σ

) , (4)

where Xi,d and Xj,d are elements of X correspond to the
indices of rows and columns. A weighted multiple-graph-shift
filter is proposed as

H =

D∑
d=1

L∑
l=1

wdhlA (d)
l
, (5)

where the real vectors h = [h1, h2, · · · , hL]T contains graph
filter taps and w = [w1, w2, · · · , wD]T contains weight
parameters corresponding to graph shift matrices. Since we
introduce multiple graph shift matrices corresponding to dif-
ferent features, we gain more flexibility in filter designing by
adjusting w. This has benefits, especially when some groups
of features are not strongly positively related to the expected
classification results.

Similar to the optimization problem introduced in [6], a loss
function is created to optimize the L filter taps and D graph
weights,

argmin
h,w

L = ‖RHS− S‖F + α ‖h‖2 + β ‖w‖2

=

∥∥∥∥∥R
(

D∑
d=1

L∑
l=1

wdhlA(d)l

)
S− S

∥∥∥∥∥
F

(6)

+ α ‖h‖2 + β ‖w‖2
where ‖·‖F represents Frobenius norm and R = diag(r)
is an N × N diagonal matrix. The first N1 elements in
the N × 1 vector r equal to 1 and the remaining N − N1

elements equal to 0. Since the unlabeled nodes are initially
assigned with zero elements in S but we expect each row in
Sfil has at least one nonnegative value, naively optimizing
the corresponding elements in Sfil to zeros will mislead the
classification. Therefore, we only utilize the labeled part in S
as a reference. We introduce R to select the corresponding
nodes from the filtered label matrix. The first term in (6)
is trying to enhance the influences among similar nodes and
weakens the influences among dissimilar nodes by retaining
the initial label values.The second and third terms in (6) are
regularizations for h and w to avoid overfitting, while α
and β are coefficients to balance the weights of all terms.
Considering the similarities among all labeled and unlabeled
nodes influence each other through matrix polynomials, the
classification problem is still semi-supervised even after the
selection process R.

After all optimized filter parameters are obtained, the graph
filter is well-trained. Then by quantizing the filtered label Sfil

as shown in (2), we can obtain the classified labels for all
nodes. Here, we adopt an operator Q(·) quantizes the largest
element in each row to be 1 and remaining elements in the
row to be 0.

III. ALGORITHM DESCRIPTION

The loss function L in (6) has a bilinear term and is noncon-
vex. We implement an alternating minimization method to op-
timize this nonconvex problem, which is simple to implement.
Although it is usually hard to guarantee a global optimum,
alternating minimization can always convergence except for
few special circumstances, which makes it a very practical
and competitive method for some nonconvex problems [21].

Vectors h and w are initialized by

hl =
1

L
,wd =

1

D
∀l ∈ {1, 2, · · · , L},∀d ∈ {1, 2, · · · , D} .

(7)

In the (m+ 1)th iteration, we first assume w is fixed, which
means we adopt value w(m) from the mth iteration. Then we
optimize h by transforming L into a convex loss function Lh,

argmin
h

L(m+1)
h = ‖RHS− S‖F + α ‖h‖2

=
∥∥∥R′Qh(w

(m))h− S′
∥∥∥
2

(8)

+ α ‖h‖2
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where Qh(w
(m)) is an NK × L matrix that is used to

optimize h contains the information of all graph shift matrices
A(1), · · · ,A(D) and relies on the current weights w(m). It
should be noted that R′ = diag(r′) is an NK×NK diagonal
matrix and the NK × 1 vector r′ =

[
rT , rT , · · · , rT

]T
. To

demonstrate the generating process of Qh(w
(m)), we first

introduce a set of N×L matrices {B1, · · · ,BK}, which gives
us Qh(w

(m)) =
[
BT

1 , · · · ,BT
K

]T
. Then we assume

Bk = [c1(k), · · · , cL(k)]
∀k ∈ {1, 2, · · · ,K} ,

(9)

where {c1(k), · · · , cL(k)} is a set of N × 1 vectors that can
be obtained by

cl(k) =

D∑
d=1

w
(m)
d A(d)lsk

∀l ∈ {1, 2, · · · , L} .
(10)

Here sk is an N × 1 label vector that satisfies S =
[s1, · · · , sk, · · · , sK ] and the N2× 1 transformed label vector
S′ is formed as

S′ =
[
sT1 , s

T
2 , · · · , sTK

]T
. (11)

Similarly, once we got the optimized value h(m+1), we assume
h to be fixed and start optimizing for w(m+1) by

argmin
w

L(m+1)
w =

∥∥∥R′Qw(h
(m+1))w − S′

∥∥∥
2

+ β ‖w‖2 (12)

where Qw(h
(m+1)) is an NK × D matrix that is used to

optimize w using the current h vector. It can be represented
by Qw(h

(m+1)) =
[
ET1 , · · · ,ETK

]T
. Here {E1, · · · ,EK} is

a set of N ×D matrices and it satisfies that

Ek = [f1(k), · · · , fD(k)]
∀k ∈ {1, 2, · · · ,K} ,

(13)

where {f1(k), · · · , fD(k)} is a set of N × 1 vectors that can
be obtained by

fd(k) =

L∑
l=1

h
(m+1)
l A(d)lsk

∀d ∈ {1, 2, · · · , D} .
(14)

We alternate these two convex minimization processes Lh
and Lw. When

∣∣L(m+1) − L(m)
∣∣ < υ, where υ is a selected

small value, we recognize the loss function L converged. The
pseudo-code of this algorithm is shown as Algorithm1.

IV. SIMULATION RESULTS

In this section, we exhibit the simulation experiment results
based on both synthetic and real datasets. We implement
the conventional shift-invariant graph filter and our proposed
graph filter with multiple weighted graph shifts on data clas-
sification problems through Monte Carlo tests.

Algorithm 1 Graph Filter with Multiple Graph Shift Matrices
Input: feature matrix X, initial label matrix S, number of

filter taps L
Output: classification result Scla

1: Generate all graph shift matrices A(d), d ∈ {1, 2, · · · , D}
through S.

2: while
∣∣L(m−1) − L(m−2)

∣∣ > υ do
3: h(m) ← argminh

∥∥R′Qh(w
(m−1))h− S′

∥∥
2

+
α ‖h‖2

4: w(m) ← argminw
∥∥R′Qw(h

(m))w − S′
∥∥
2
+β ‖w‖2

5: H(m) =
∑D
d=1

∑L
l=1 w

(m)
d h

(m)
l A (d)

l

6: L(m) =
∥∥RH(m)S− S

∥∥
F

7: end while
8: Obtain classification result Scla = Q(Sfil) = Q(HS)

Fig. 1. (a) A sample of normal features with four categories and (b) a sample
of overlapping features with four categories.

A. Synthetic Dataset

In many conventional machine learning studies, researchers
test their classifier with various synthetic dataset to evaluate
their performance. It has been discussed in [22] that some
characters such as overlapping, noise and inherent complex-
ity will bring more difficulties in classification for many
data mining algorithms. To study the filter performance with
different feature qualities, we experiment both graph filters
by considering five kinds of features: normal, overlapping,
spiral, half ellipse and noise. As shown in Figure 1 (a), we
illustrate four categories containing normal features in a two-
dimensional domain. The features belonging to each category
on each dimension is generated by a Gaussian distribution
with randomly selected means and variances. For overlapping
features shown in Figure 1 (b), there are still four categories
with Gaussian generated features but two of them are strongly
overlapping. The spiral and half ellipse exhibits in Figure 2
(a) and (b) also have four categories with randomly selected
parameters. The noise features, which is not illustrated in
figure, are randomly generated for all categories through one
uniform distribution with randomly selected parameters.

In our MATLAB simulation experiments, we corroborate
normal features with the other four features respectively. By
doing this, we create a synthetic dataset that have different
qualities of features. Since the conventional graph filter relies
heavily on that graph shift matrix should correctly represent
the similarities among all nodes, the different qualities of

3559



Fig. 2. (a) A sample of spiral features with four categories and (b) a sample
of half ellipse features with four categories.

features will be a meaningful challenge to building an effective
graph filter. Specifically, in each Monte Carlo simulation,
we first generate and standardize a graph dataset with ran-
domly selected feature generation parameters who contains
half normal features and half another kind of features from
the remaining four. The synthetic dataset is fully labeled
and uniformly classified into four categories with N = 400
and D = 20. Then we randomly select 10% nodes from
each categories as known nodes and treat the remaining 90%
as unknown nodes. With different qualities of features and
different number of labeled nodes, we are able to analyze how
feature quality influence the performance of the graph filters.

Within rounds of Monte Carlo simulations, we test the
performance of both conventional and proposed graph filters
with different combinations of features. The average error rates
of two graph filters are recorded in the Table I. We compare
their performances by calculating the ratio between error rate
of conventional graph filter and error rate of proposed graph
filter. It shows that with the decreasing of SNR, our proposed
graph filter provides smaller error rate.

TABLE I
ERROR RATE OF GRAPH-BASED CLASSIFICATION WITH SYNTHETIC DATA

Feature Average Classification Error Rate
Combination Conventional Proposed

Normal & Overlapping 0.0000 0.0000
Normal & Spiral 0.0056 0.0045

Normal & Half Ellipse 0.1796 0.0016
Normal & Noise 0.7962 0.0009

From the first two groups of error rates we can see that the
graph-based classifier works well on both linearly separable
and inseparable features. However, as mentioned in Section
I, the graph shift matrix highly influences the performance of
conventional graph filter. As shown by the simulation result
of “Normal & Half Ellipse” features, the average error rate
of conventional graph filter goes up since the corresponding
graph shift matrices no longer represents the similarity in-
formation correctly. When we select the “Normal & Noise”
feature combination, which is more chaotic, the conventional
graph filter fails in the classification.

Fig. 3. The building energy load dataset with three categories: low cost,
medium cost, high cost.

B. Real Dataset

The real dataset we adopt is called energy efficiency
dataset [23]. This dataset collects 8 shape-related features
for 768 buildings, for example surface area, with two real
value responses, hearing load and cooling load. As shown in
Figure 3, we uniformly cluster the data into 3 categories: low
load, median load and high load corresponding to these two
responses.

Similar to the simulation experiments on the synthetic
dataset, for the energy efficiency dataset, we still compute the
average error rate as the filter performance criterion. In each
Monte Carlo test, we randomly select a number of nodes as
labeled corresponds to a certain labeling ratio and record the
performance for two kinds of filters. Through Monte Carlo
tests, the simulation result is shown in Table II. As we can
see that with comparatively low labeling ratio, our proposed
algorithm can provide significant advantage in classification
error rate.

TABLE II
ERROR RATE OF GRAPH-BASED CLASSIFICATION WITH REAL DATA

Labeling Average Classification Error Rate
Ratio Conventional Proposed
0.05 0.4688 0.2513
0.1 0.3066 0.2005
0.15 0.2663 0.1901
0.2 0.1953 0.1947

V. CONCLUSIONS

In this paper, we discussed the problem of using graph
filter to do data classification. We propose a novel graph
filter designing method, which considers multiple graph shift
matrices. Comparing to the conventional graph filter that
adopts only one graph shift matrix, our method is more flexible
and robust when we have features with various qualities and
can be efficiently solved by alternating minimization. We use
simulations on both synthetic data and real data to show that
the proposed approach can provide lower error rate than the
conventional one when the feature qualities are poor.
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