INTRODUCTION AND MOTIVATION

- Wireless sensor networks (WSNs) with no fusion center
- Estimate the system size (total number of sensors) of WSNs
- Applications: network maintenance, detect nodes join or leave the network

PROBLEM STATEMENT

- Count number of nodes using consensus
- Random initial values, x_i, generated at nodes
- Different consensus algorithms:
 - Max consensus
 \[x_i(t + 1) = \max \left\{ x_i(t), \max_{j \in N} x_j(t) \right\} \]
 - Average consensus
 \[x_i(t + 1) = W_{ii} x_i(t) + \sum_{j \neq i} W_{ij} x_j(t) \]
- System size inferred from the consensus results
- Problem: performance is affected by:
 - Types of consensus algorithm
 - Initial values, x_i
- Performance analysis: Fisher information (FI) and Cramer-Rao bounds (CRBs)

RESULTS: FI AND CRBS UNDER DIFFERENT CASES

Max Consensus in the Absence of Noise

Theorem

Assume the initial values at nodes x_i are i.i.d.
with $F(x)$ and $CDF F(x)$, and $f(x)$ is differentiable. When max consensus is used, the Fisher information for estimate of system size N is,

\[I_{max} = \frac{1}{N^2}. \]

The CRB is the inverse of the Fisher information, and a lower bound on the estimation variance can be expressed as

\[\text{Var} \left[\hat{N} \right] \geq N^2. \]

The distribution of the initial values at nodes does not affect the Fisher information and CRB.

Average Consensus in the Absence of Noise

Theorem

Assume the initial values at nodes x_i are i.i.d. with mean μ and variance σ^2. Also assume that N is large. When average consensus is used, the Fisher information for estimate of system size N is

\[I_{ave} = \frac{1}{2N}. \]

The CRB is the inverse of the Fisher information, and an lower bound on the estimation variance can be expressed as

\[\text{Var} \left[\hat{N} \right] \geq 2N^2. \]

Max Consensus with Noise

Theorem

Assume the initial values at nodes x_i have exponential tail and its tail PDF $\lambda e^{-\lambda x}$. The distribution of the max of the initial values can be approximated using Gumbel distribution. Assume that the final error at nodes is Gaussian distributed $e \sim N(\mu, \sigma^2)$. The Fisher information for estimate of system size N is bounded by

\[I_{max} \leq \left(\frac{1}{N^2} \right) \left(\frac{\lambda^2}{\sigma^2 + \lambda^2} \right). \]

The CRB is the inverse of the Fisher information, and a lower bound on the estimation variance can be expressed as

\[\text{Var} \left[\hat{N} \right] \geq N^2 \left(\sigma^2 + \lambda^2 \right). \]

Average Consensus with Noise

Theorem

Assume the initial values at nodes x_i are i.i.d. with mean μ and variance σ^2. The final error at nodes is Gaussian distributed $e \sim N(0, \sigma^2)$. Also assume that N is large. When average consensus is used, the Fisher information for estimate of system size N is

\[I_{ave} = \frac{1}{2N} \left(\frac{\sigma^4}{\sigma^4 + \sigma^2} \right). \]

When N is large, $I_{ave} \approx \frac{1}{2N \sigma^2} \approx \frac{1}{2N} (\text{SNR})$, where SNR is defined as $\frac{\sigma^2}{\sigma^2}$. The CRB is the inverse of the Fisher information, and an lower bound on the estimation variance can be expressed as

\[\text{Var} \left[\hat{N} \right] \geq 2N^2 \left(\frac{\sigma^4}{\sigma^4 + \sigma^2} \right). \]

CONCLUSIONS

- For max consensus without noise, x_i does not affect Fisher information and Cramer-Rao Bound
- Max consensus has lower CRB (noiseless case)
- How noise affect FI and CRB is presented

REFERENCES

ACKNOWLEDGMENT

This work is funded in part NSF award ECCS – 13079282 and the SenSIP Center, School of ECEE, Arizona State University

Sensor Signal and Information Processing Center
http://sensip.asu.edu