A Probabilistic Approach to the Positive and Unlabeled Learning Problem
Kristen Jaskie, Andreas Spanias
SenSIP Center, School of ECEE, Arizona State University.

Traditional binary classification requires well-labeled data.
- Both positive and negative labels:
 - y = 1
 - y = 0

Negative data is EXPENSIVE in many interesting problems.
- Ex: Cancer Detection
 - Known positive set: People who have cancer
 - Unlabeled set: Everyone else
 - Finding true negatives – people who ABSOLUTELY do not have cancer – is expensive or impossible.

This leaves us with some positive and no negative labels.

Other examples:
- Fraud detection
- Terrorist detection
- Threat detection

GOAL
- Given data samples \(x \) and data labels \(y \)
- We want to learn a probabilistic classifier \(p(y = 1| x) \)

PREVIOUS SOLUTION [1]
- Include a new random variable \(s \):
 - If sample is labelled, \(s = 1 \), if unlabelled, \(s = 0 \)
- It can be shown that
 \[
 p(y = 1| x) = \frac{p(s = 1| x)}{c}
 \]
- Used Standard Logistic Regression (SLR) to learn non-traditional classifier \(p(s = 1| x) \)
- Constructed estimators for \(c \) using a validation data.
 - Found to be INEFFECTIVE in practice.

OUR SOLUTION
- Created a Modified Logistic Regression (MLR) to learn non-traditional classifier \(p(s = 1| x) \)

REFERENCE