Irradiance Estimation for a Smart PV Array

Henry Braun, Shwetang Peshin, Andreas Spanias, Cihan Tepedelenlioglu, Mahesh Banavar,
Girish Kalyanasundaram and Devarajan Srinivasan
SenSIP Center, School of ECEE, Arizona State University, Tempe, AZ

The Problem

Data collected at inverter leaves unanswered questions:
• Are PV modules performing to spec?
• Does the array need cleaning?
• Are there significant mismatch losses?
• Is there a fault in the array?

Our Solution

• Smart monitoring devices deployed at the level of individual modules
• Topology reconfiguration via switching

Inefficiencies:
• Partial shading
• Long mean time to repair

Irradiance Estimation Algorithm

• Estimate Single-diode model irradiance from current, voltage, and temperature:

\[I_{sc} = \frac{V_{oc} - \frac{V_{oc} - V_{m}}{R_{sh}}}{1 - \frac{V_{oc} - V_{m}}{R_{sh}} - \frac{I_{sc}}{R_{sh}}} \]

References

[1] H. Braun, S. T. Buddha, V. Krishnan, A. Spanias, C. Tepedelenlioglu, T. Yeider,
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 1681(1684), March 2012, 25-30.
H. Braun, S. T. Buddha, V. Krishnan, A. Spanias, C. Tepedelenlioglu, T. Yeider, T.
Detection, and Optimization (Morgan and Claypool eBooks, ISBN 978-
1608459483, 2012).
T. Yeider, and T. Takehara, “Signal processing for photovoltaic arrays,”
in Int. Conf. on Emerging Signal Processing Applications, Jan 2012.
Congress and Expo, September 2015.

Performance

• < 4% error in Irradiance for air mass < 3
• < 1% error for temperature errors < 10° C

Error due to air mass uncertainty at STC

Error due to temperature measurement uncertainty at STC

Acknowledgments

This work is supported in part by the NSF GOALI award 1308052, the NSF REV
GOALI supplement 1450816, Powdrn Inc, ViaSOL Inc, and ACT Corporation.

SenSIP Center, School of ECEE, ASU
http://sensip.asu.edu