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Data aggregation for machine learning and data
mining applications in WSN creates a bottle neck at
fusion center.

Matrix transformation: W =1 — a L
Matrix Deflation: Z =W — %11T

Fully Distributed processing is effective in terms of Power Iteration : ut*l = Z ut/‘ IZutH

Memory and power management
Communication Bandwidth and Fault tolerance

Applications Input for the algorithm is the Location co-ordinates of sensors and

Environmental monitoring number of clusters K

Military and surveillance ) Similarity Graph : Naturally induced by communication radius of

Habitat monitoring & precision agriculture the nodes € and location of the nodes.

= All nodes whose pairwise Euclidean distance is less than are
assumed to be connected.

Data Labeling

) Distributed Power Iteration : To compute the Fiedler vectors of the
graph Laplacian of the similarity graph in a distributed way.
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= All the nodes converge to the Fiedler vector of L.

) Distributed K- Means : To cluster the N nodes into K groups by
taking Fiedler vector as the input.
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Similarity Graph
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Figure 1: Synthetic data of 2-D sensor locations. Figure 2: Similarity graph, € = 0.3.
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Figure 3: Convergence of nodes to the Fiedler vector. Figure 4: Fiedler Vector computed by Algorithm 1, o = (.02,
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Figure 5 Result of distributed spectral clustering, K = 3. Figure 6: K-means clustering on the dataset in Fig. 1, K = 3.
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