Machine Learning Application in Accelerometer Temperature Performance
Gowtham Muniraju¹, Lalo Canales², Thomas Li², Andreas Spanias¹, Silvia Garre²
¹Arizona State University, ²NXP Semiconductors Inc

MOTIVATION
- We focus on reducing the offset drift over temperature of a Low-G accelerometer MEMS sensor.
- The behavior of the offset changes with temperature and angle of orientation.
- A Deep neural network (DNN) can predict the offset behavior with a set of test temperatures.
- This DNN predictor will significantly reduce the resources required during the test time.

POTENTIAL APPLICATIONS
- Sensors with high precision and sensitivity are an essential part of:
 a. Cyber physical systems
 b. Wireless sensor networks
 c. Health monitoring applications
 d. Military applications
 e. Auto-motive industry

For high precision sensors, we need to reduce the offset.

FACTORS RESPONSIBLE FOR OFFSET
Factors that induce offset in the sensor measurements are
1. Temperature
2. Mechanical stress
3. Socket stress
4. Sensor reuse
5. Angle of orientation
6. Unknown factors

DNN PREDICTOR
- A behavioral model for Offset is designed.
- A DNN predictor to predict offset pattern over temperature.
- A model to evaluate the importance of each feature.
- DNN model significantly reduces resources during test time.

FEATURE IMPORTANCE
The model indicates that the temperature range of 100 to 110 degrees to be of higher importance, which corresponds to the effect of added variation due to the package's glass transition temperature, where we observe an abnormal shift in the offset pattern.

REFERENCES