GLOBAL OPTIMIZATION OF GRAPH FILTERS WITH MUTIPLE

MOTIVATION

) Graphs can capture complex relational characteristics.

) Graph signal processing has advantage in dealing with
datasets with irregular and complex structures.

J Adopting multiple shift matrices provides more
flexibility in graph filter design.

POTENTIAL APPLICATIONS

1 A classifier for data labeling.

1 An error detector for network analysis.

1 A pre-process of neural networks for reducing
computation and mitigating overfitting risk.

PROBLEM STATEMENT

] A partially labeled dataset with graph encoded inner
interaction.
Graph vertices: data points.
Graph edges: similarities among the vertices.

) The feature qualities of vertices are uneven.
) Graph shift matrices are generated from the dataset.

) Graph parameters are decided through branch and
bound optimization method.

1 A graph filter is designed as the classifier.
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GRAPH FILTERING PROCEDURE

) Graph Filtering:
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) Conventional Graph Filter Design Method:
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SIMULATION DATA WITH UNEVEN FEATURES
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CONCLUSION

1 A well designed graph filter can work as a semi-supervised classifier.

BRANCH AND BOUND
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1 The proposed filter designing method provides lower error rate than the

conventional one when feature qualities are uneven.

! The branch and bound method can technically provide the global optima
for our nonconvex problem and then a benchmark can be provided.
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