GLOBAL OPTIMIZATION OF GRAPH FILTERS WITH MULTIPLE SHIFT MATRICES

Jie Fan, Cihan Tepedelenlioglu, Andreas Spanias
SenSIP Center, School of ECEE, Arizona State University

MOTIVATION

- Graphs can capture complex relational characteristics.
- Graph signal processing has advantage in dealing with datasets with irregular and complex structures.
- Adopting multiple shift matrices provides more flexibility in graph filter design.

POTENTIAL APPLICATIONS

- A classifier for data labeling.
- An error detector for network analysis.

PROBLEM STATEMENT

- A partially labeled dataset with graph encoded inner interaction.
- Graph vertices: data points.
- Graph edges: similarities among the vertices.
- The feature qualities of vertices are uneven.
- Graph shift matrices are generated from the dataset.
- Graph parameters are decided through branch and bound optimization method.
- A graph filter is designed as the classifier.

ACKNOWLEDGEMENTS

This work is funded in part by the NSF award ECCS 1307982, NSF CPS award 1646542 and the SenSIP Center.

GRAPH FILTERING PROCEDURE

- **Graph Filtering:**
 \[S^{\text{cla}} = Q(S^{\text{ini}}) = HS \]

- **Conventional Graph Filter Design Method:**
 \[A_{ij} = \exp \left(-\frac{\| x_i - x_j \|^2}{\sigma} \right) \]
 \[H = h_0 + h_1 A + h_2 A^2 + \cdots + h_L A^L \]

- **Proposed Graph Filter Design Method:**
 \[A(d)_{ij} = \exp \left(-\frac{(x_i - x_j)^2}{2\sigma} \right) \]
 \[H = \sum_{d=0}^{D} w_d A(d)^j \]
 subject to \(h \in \Theta_h, w \in \Theta_w \)

- **Convex Relaxation**
 \[L = \arg \min \| \sum_{d=1}^{D} y_{d,j}(RA(d)S) - S \|_F \]
 \[y_{d,j} \geq \max \{ w_{d,0} h_0 + h_1 w_{d,1} h_0 + h_2 w_{d,2} h_0 + \cdots + h_L w_{d,L} h_0 \} \]
 \[y_{d,j} \leq \min \{ w_{d,0} h_0 + h_1 w_{d,1} h_0 + h_2 w_{d,2} h_0 + \cdots + h_L w_{d,L} h_0 \} \]

BRANCH AND BOUND

REFERENCES