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MOTIVATION	

q Graphs can capture complex relational characteristics.
q Graph signal processing has advantage in dealing with 

datasets with irregular and complex structures.
q Adopting multiple shift matrices provides more 

flexibility in graph filter design.

PROBLEM	STATEMENT

SIMULATION	DATA	WITH	UNEVEN	FEATURES

Sensor Signal and Information Processing  Center
http://sensip.asu.edu

• [1] S. Chen, A. Sandryhaila, J. M. Moura and J. Kovacevic, “Adaptive graph filtering: 
Multiresolution classification on graphs,” IEEE GlobalSIP,2013, pp. 427–430.

• [2] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovacevic, “Semi-supervised
multiresolution classification using adaptive graph filtering with application to indirect
bridge structural health monitoring,” IEEE Trans. on Signal Processing, vol. 62, pp. 2879–
2893, 2014.

• [3] J. Fan, C. Tepedelenlioglu and A. Spanias, “Semi-supervised classification based on 
graph filtering,” IEEE ICASSP, 2019.

POTENTIAL		APPLICATIONS

q A well designed graph filter can work as a semi-supervised classifier.
q The proposed filter designing method provides lower error rate than the

conventional one when feature qualities are uneven.
q The branch and bound method can technically provide the global optima

for our nonconvex problem and then a benchmark can be provided.

q A classifier for data labeling.
qAn error detector for network analysis.
q A pre-process of neural networks for reducing 

computation and mitigating overfitting risk.

BRANCH	AND	BOUND

GRAPH	FILTERING	PROCEDURE
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CONCLUSION

q Graph Filtering:
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q Conventional Graph Filter Design Method:
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q Proposed Graph Filter Design Method:
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Informative Feature Non-informative Feature

Convergence Learning Curve

q A partially labeled dataset with graph encoded inner
interaction.
Graph vertices: data points.
Graph edges: similarities among the vertices.

q The feature qualities of vertices are uneven.
q Graph shift matrices are generated from the dataset.
q Graph parameters are decided through branch and 

bound optimization method.
q A graph filter is designed as the classifier.
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