
Abstract— In this paper, we describe a Cyber-Physical system 
approach to fault detection in Photovoltaic (PV) arrays. More 
specifically, we explore customized neural network algorithms 
for fault detection from monitoring devices that sense data and 
actuate at each individual panel. We develop a framework for the 
use of feedforward neural networks for fault detection and 
identification. Our approach promises to improve efficiency by 
detecting and identifying eight different faults and commonly 
occurring conditions that affect power output in utility scale PV 
arrays.  
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I. INTRODUCTION 
The efficiency of solar energy systems requires detailed 

analytics for each panel including voltage, current, 
temperature and irradiance. Solar power output is affected by 
factors such as cloud cover, soiling of modules, short circuits 
between panels, unexpected faults and varying weather 
conditions. In this paper we describe machine learning and 
neural network approaches for Fault Detection. These 
approaches are aimed at improving the reliability and 
efficiency of utility scale solar arrays. We describe theoretical, 
experimental, and implementation aspects of this 
comprehensive cyber-physical system (CPS) approach. 

 

 
Figure 1. Overview of the CPS Solar System for monitoring. 

 
We improve solar panel efficiency using machine learning 

techniques to learn and predict multiple system parameters 
using sensors and sensor fusion. Training and test data are 
acquired through cyber-physical methods including sensors 

and actuators. We also use machine learning and deep learning 
algorithms for fault detection which improve efficiency. We 
describe these in depth below. An overview of our research is 
shown in Figure 1.  

Parameter sensing at each solar panel provides information 
for fault detection and power output optimization. Neural 
networks and sensor fusion enable us to implement robust 
shading estimation and fault detection algorithms. We have 
developed Smart Monitoring Devices (SMDs) with sensors 
that measure current, voltage and temperature. The data 
obtained from these sensors will be used for fault diagnosis in 
PV arrays. The SMDs also have relays that enable dynamical 
reconfiguration of connection topologies [1]. 
 Previously, we have worked on signal processing 
algorithms for PV monitoring [1-4]. The methods presented in 
this paper will be implemented and validated on state-of-the-
art PV array shown in Figure 2. This CPS system was 
developed by the SenSIP Center and involves an array of 104 
panels. 

 
Figure 2. The SenSIP PV experimental facility [1] used to 
validate our CPS algorithms for fault detection.  
 

In our previous work [2-9,33], we have documented an 
efficiency improvement of 4%. We estimate an efficiency 
improvement of up to 10% with the use of custom clustering 
algorithms, customized sensor fusion and neural network 
algorithms for fault detection.  

A utility-scale PV array consists of panels that are 
connected as a combination of series and parallel strings to 
maximize power output. Shading, weather patterns and 
temperature can severely affect power output. To minimize 
these effects, individual panel current-voltage (I-V) 
measurements and local weather information [11-14] are 
essential. We can control power output through matrix 
switching (i.e., real time topological changes with relay 
switches in each SMD [1]) of PV modules, allowing for 
several interconnection options. We optimize utility scale PV 
array systems by exploiting the measured I-V and weather 
data. Each SMD is connected to each PV panel that collects 
the individual panel metrics (current, voltage, and 
temperature) roughly every ten seconds.  

The algorithms operate on PV array measurements. 
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Parametric models are used to detect and identify faults. 
SMDs can perform panel switching or bypassing if necessary 
[1]. Reference [1] explains the use of relays in SMDs that 
operate on commands to reconfigure panel connection 
topologies. 

In this paper, we propose the following: 
i. Forming a unique set of custom features for fault 

detection and identification. 
ii. Applying a customized neural network algorithm 

for fault classification in PV arrays. 
iii. Detect and identify eight different commonly 

occurring PV fault cases (Section IV).  

II. PROBLEM STATEMENT  
Reliability is a critical factor for a PV system. Issues such 

as ground faults, arc faults, open circuits, short circuits, 
soiling, and partial shading can all reduce efficiency and need 
to be addressed. Some of these faults are undetected for a 
prolonged length of time in real-world situations. This leads to 
reduced and inefficient functioning of the PV array and a 
significantly lower power output. Unnoticed faults in PV can 
be dangerous and potentially life threatening. A real-world 
example would be the Bakersfield fire which was caused due 
to an undetected ground fault [32]. Although ground faults can 
now be detected with the use of inverters, faults such as 
soiling and short circuits between panels often go undetected 
[2]. 

The I-V data in a PV array can be measured at the panel-
level inexpensively. I-V measurements have high correlation. 
This data can be used to build correlation models. Such 
models are useful in predicting possible ground faults, arc 
faults, soiling, shading, etc. [23]. The I-V curve is modeled 
using the single diode model shown in Figure 3, as a function 
of temperature, irradiance, open circuit voltage (Voc) and short 
circuit current (Isc). Each panel has a peak operating point 
known as the maximum power point (MPP). Fault detection 
using I-V data can be accomplished by measuring MPPs and 
observing the variation of the measured MPP from the actual 
MPP. Various parameter estimation methods for PV systems 
have been proposed in [36,37] and the references there in. 

 
Figure 3. Typical circuit model for a PV module. 

A. Existing Approaches for Fault Detection 
Fault detection in PV arrays have been studied extensively. 

While [18-22] use statistical methods to identify faults, [10, 
28-30] use graph and neural network architectures to detect 
and identify faults. However, to our knowledge, none of these 
techniques addresses specifically precise identification of the 
type of fault. There is a need for a holistic method which can 
detect and identify and localize faults. In [6-8], we show how 
to detect faults in individual modules using clustering 

algorithms. In this paper, we develop an algorithm to identify 
and localize underperforming modules using neural network 
architectures.  

B. Using Machine Learning for Fault Detection 
Human operators are currently required to manually 

perform fault detection and identification. Studies have [22-
24] showed that the current method for mean time to repair 
(MTTR) is at approximately 19 days. There is a significant 
need to reduce MTTR to reduce power losses from the PV 
array. We use machine learning methods to reduce the MTTR 
for PV arrays.  

Fault identification and localization problems pose several 
challenges and research opportunities. A system must first 
accurately classify the PV array condition and then react to 
unseen data to correctly classify the condition of operation of 
the PV array. Considering these challenges, we explore the use 
of machine learning techniques [15]. Semi-supervised learning 
can be used to label many realistic faults from few measured 
examples.  

III. MACHINE LEARNING RESULTS 
 Signal and image processing applications use machine 
learning algorithms in several applications [27, 34-35]. The 
utility of machine learning tools has also been shown in 
various Internet-of-things (IoT) applications [16-17]. In the 
following section, we explore the use of clustering algorithms 
and the need for neural networks in solar energy systems.  

A. Results using K-means algorithm: 
 The K-means algorithm is a clustering-based approach in 
machine learning that can be used for fault detection. Given a 
dataset, K-means clustering partitions n observations into k 
clusters. Each observation belongs to the cluster with the 
nearest mean. The mean serves as a representative of the 
cluster. Simulated data to generate MPPs was obtained using 
MATLAB’s Simulink model as shown in Figure 4. The K-
means algorithm was applied to simulated data as shown 
below. While generating MPPs, we consider a variance of 
±5V for Vmp and a variance of ±1A for Imp to account for 
variability in real time scenarios [29]. 
 

 
Figure 4: Simulink Model used to create the dataset for the 
eight different types of faults considered.  



 
 
 To simulate a varying temperature panel, the simulated 
panel was assigned a higher temperature value. The data was 
obtained and trained with the K-means algorithm. 
 The results obtained are shown in Figure 5. Each set of data 
points represent one condition associated with the PV Array. 
Using K-means with voltage, current and temperature as our 
three axes, we successfully identify ground faults (Gnd), arc 
faults (Arc), standard test conditions with irradiance at 1000 
W/m2 and a module temperature of 25ºC (STC), shaded 
conditions (Shading) and varying temperature conditions 
(Varying Temp).  
 

 
Figure 5: Clustering using the K-means algorithm. Training 
forms clusters of normal and simulated faults for PV data. 
 
 However, certain other conditions such as soiling and short 
circuits are not identified using this method due to the lack of 
labels in the dataset. Soiling and short circuits conditions have 
MPPs which lie in similar areas in the two dimensional I-V 
curve space. The K-means algorithm also does not identify 
partial shading versus complete shading of modules. The 
differentiator for these cases is described in the next section. 
There is a need for the use of neural network algorithms to 
detect and identify faults in PV arrays.  

IV. USE OF NEURAL NETS FOR FAULT DETECTION  
 Various signal processing and statistical methods have been 
developed for detection and identification of faults in utility 
scale PV arrays. However, there is a need for a comprehensive 
algorithm which captures a wide variety of faults. In our data 
simulation, we use the model described earlier in Figure 4. 
While several methods have been proposed in the past for 
fault detection, this method aims to detect and identify the 
type of fault occurring in PV arrays. We emphasize that, 
successful classification of faults may lead to a significant 
reduction of the meantime to repair (MTTR) in utility scale 
PV arrays [18-21]. 
 Figure 6 shows the I-V curve for the multi-class 
classification problem we have considered in this paper. While 
traditional signal processing algorithms use the statistical 
properties of a single I-V-curve of a given module, most 
methods do not cover multiple cases. To do this, we used 
neural networks for fault detection and identification. With the 

use of unsupervised machine learning algorithms, a fault could 
be detected but not identified as discussed previously. In 
section III, we demonstrated that unsupervised algorithms 
could not classify the type of fault (ground fault, arc fault, 
shading, etc.). We need an algorithm which uses partially 
labelled data to classify unlabeled data. Using neural networks 
allows not only detection but identification of the fault type 
with a high accuracy. Previous studies that used neural nets 
have been used to make binary decisions on fault detection, 
i.e., detect faults but not classify the type of faults [28-31]. In 
our study, we identify eight different cases of faults and 
shading effects.  

 
Figure 6: I-V curves for the cases considered. 
 
 To do this, we use a multi-layer feedforward neural network 
with multiple inputs as features. A set of unique features is 
selected as inputs to the neural network and are critical in 
identifying the type of fault.  
 The maximum voltage (Vmp) and maximum current (Imp) lie 
at the knee of the I-V curve. These two features help identify 
the power produced by the PV array. We chose power as a 
third feature to help classify shading. 
 The next set of features include irradiance and temperature. 
Irradiance and temperature are critical features which help 
identify shading conditions from varying temperature 
conditions. Vmp and Imp for shading and varying temperature 
conditions lie at similar points along the I-V curve, making it 
difficult to classify the two cases. With these two critical 
features, along with those previously mentioned, we can 
separate shading from temperature conditions. 
 We considered other features such as Gamma ( ) - the ratio 
of power over irradiance, and Fill Factor - a ratio of the 
product of the short circuit current (Isc) and open circuit 
voltage (Voc) over product of Vmp and Imp. These two features 
capture the area of the I-V curve along different dimensions 
which help classify multiple shading conditions. Multiple 
shading conditions include partial shading versus complete 
shading of the module.  
 Additionally, we considered features Voc and Isc which helps 
in classifying shading versus soiling. Shading and soiling 
often have overlapping data points and hence it is difficult to 
identify one versus the other. However, the difference between 



 
 
the two is captured in open circuit voltage and short circuit 
current causing these two features to serve as distinguishing 
parameters to identify shading versus soiling.  
 In our most recent neural network algorithm, we use nine 
inputs namely Voc, Isc, Vmp, Imp, temperature of module, 
irradiance of module, fill factor, gamma and power, to classify 
eight different faults. The eight faults classified are ground 
fault (Gnd), arc fault (Arc), complete module shading (Fully 
Shaded), partial module shading (Partial Shading), varying 
temperatures of module (Varying Temp), soiling (Degraded), 
short circuits (SC) and standard test conditions with irradiance 
at 1000 W/m2 with module temperature of 25ºC (STC). 
Research at this stage also involves obtaining data in real time. 
Figure 7 gives an overview of describing the process for real 
time scenarios.  
 

 
 
Figure 7: Block diagram describing the process of fault 
detection and identification for a real time scenario.  

 
 Using the features mentioned, we apply them as inputs to a 
multilayer feedforward neural network, popularly called as the 
multilayer perceptron (MLP). We use a 5 layered neural 
network with backpropagation to optimize the weights used in 
each layer. Each layer uses 6 neurons. 

 
Figure 8: Neural Network Architecture used for Fault 
Detection and Classification.  
 
 Information flows through the neural networks in two ways: 
(i) In forward propagation the MLP model predicts the output 
for the given data and (ii) In backpropagation the model 
adjusts its parameters considering the error in the prediction. 
The activation function used in each neuron allows the MLP 
to learn a complex function mapping. The MLP architecture 
used for Fault Classification is shown in Figure 8. Input to the 
model is the feature vector , the output of the first and 
consecutive hidden layer is given by 
 

                                                     (1) 

                                                  (2) 
Where i is the layer index and  is the activation function. , 
has a dimension of 48000 9. Each column represents a feature 
of the neural network mentioned earlier. The output of the 
MLP is obtained as: 
 

                                 (3) 
 

 Weights of each neuron are trained using a scaled gradient 
backpropagation algorithm. Each layer is assigned a tanh 
(hyperbolic tangent) activation function. From our 
experiments, we see that the tanh decision boundary gives the 
best accuracy. The output layer uses the SoftMax activation 
function to categorize the type of fault in the PV array.  
 We simulate each fault type versus shading versus standard 
conditions so as to have the same number of datapoints and 
avoid bias in the training of the neural network. For the 
training of the neural network, we use 70% of labelled data for 
training, 15% of data for validation and the remaining 15% 
data as a test dataset, allowing the algorithm to classify the 
“unknown” testing datapoints. The results of the algorithm are 
shown in the form of a confusion matrix in Figure 9. We 
obtained an accuracy of over 99% for noiseless measurements. 
More experiments are underway to explore the use of neural 
networks for real time measurements including noisy data. 
This is a significant improvement from previous fault 
detection and identification methods. 

 
 
Figure 9: Confusion matrix for fault identification.  

V. CONCLUSION 
 We address the problem of PV array monitoring and 

control using advanced neural network algorithms. We 
propose the use of neural networks for real time monitoring of 
PV arrays. We consider nine input features for the neural 
network to identify faults in PV arrays. Simulation results 



 
 
using neural networks demonstrated successfully detecting 
and identifying commonly occurring faults and shading 
conditions including soiling, short circuits, ground faults, and 
partial shading in utility scale PV arrays. We show a 
significant improvement in accuracy of detection and 
identification of faults compared to traditional and existing 
methods using noiseless synthetic data. Experiments are 
underway for fault detection using real-time data including 
examination of the algorithms using noisy observations.  
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