ABSTRACT

- Speaker diarization identifies speakers in long speech recordings.
- Form speech segments and remove undesired noise and unvoiced sections.
- Form i-vectors from features extracted from speech segments.
- Train a machine learning model on extracted features.
- Classify new speech segments according to the speaker identity.

MOTIVATION

Speaker Recognition
- Track the active speaker in a conversation with multiple speakers.

Audio Indexing
- Detect the change of speakers as a pre-processing step for automatic transcription.

Information Retrieval
- Examine contributions of speakers in speech recordings.

PROBLEM STATEMENT

- Perform both supervised and unsupervised speaker diarization in a telephone conversation.
- Distinguish among male and female speakers to answer the question "Who speaks when?"

METHODS

Voice-Activity Detection (VAD)
- Identifies non-speech sounds and retains only the actual speech.

I-Vectors
- Extracting identity information using MFCCs.
- Low-dimensional i-vectors that represent the utterances from speech.

Support Vector Machines (SVM)
- Given labeled data, SVM can be trained to develop a model capable of distinguishing among different classes.
- The trained SVM model predicts the identity of speaker in new speech data.

K-Means Clustering
- With a known number of groups k, k number of centroids are randomly chosen.
- K-means clusters the data into k groups of clusters.

RESULTS

Supervised learning
- 97.7% accuracy in classification.
- 75% training data to generate an SVM model.
- 25% remaining data to test trained model.

Unsupervised learning
- 98.5% accuracy in clustering.
- All data is partitioned into three groups of clusters.
- Each cluster represents a speaker class.

REFERENCES

ACKNOWLEDGEMENT

This project was funded in part by the National Science Foundation under Grant No. CNS 1659871 REU site: Sensors, Signal and Information Processing Devices and Algorithms.