Managing Respiratory Disease with Wearable Devices

Nandini Sharma, REU Student, Arizona State University
Graduate Mentor: Paul Stevenson and Hany Arafa, Faculty Advisor: Dr. Jennifer Blain Christen
SenSIP Center, School of ECEE, Arizona State University

ABSTRACT

- Small, inexpensive microprocessors and sensors enable wearable devices
- Provide patients and physicians with real-time environmental and physiological data
- Data fusion enables improved assessment and disease management

MOTIVATION

Respiratory Diseases
- Asthma
- Chronic obstructive pulmonary disease (COPD)
- Chronic Bronchitis
Stressors
- Allergens - i.e. pollen
- Irritants - i.e. cigarettes
Who is affected worldwide?
- over 235 million people
- over 3 million deaths

PROBLEM STATEMENT

AirCare Preventative Measure
- Map showing real-time data on air quality
- Data gathered from public with wearables
- Info access from app

METHODS: SENSOR PROTOTYPE

Environmental Sensors: Initial Prototype
- Temperature sensor
- Ozone Sensor
- Microprocessor
- Dust sensor

METHODS: EXPERIMENTAL SETUP

Comparison of our sensors and commercial sensor: Overnight Run

INITIAL RESULTS

Comparison of our sensors and commercial sensor: Overnight Run

- Devices read similar values of ozone consistently

REFERENCES

Blain Christen, Jennifer. (June 8, 2017). Particulate matter (PM10 and PM2.5).

Sensor Signal and Information Processing Center
http://sensip.asu.edu

This material is based upon work supported by the National Science Foundation under Grant No. CNS 1659871 REU Site: Sensors, Signal and Information Processing Devices and Algorithms.